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Thrning Bayesian Model Averaging Into Bayesian Model 
Combination 

Kristine Monteith, James L. Carroll, Kevin Seppi, and Tony Martinez 
kristinemonteith@gmail.com, jlcarroll@JanLgov, kseppi@byu.edu, and martinez@cs.byu.edu 

Abstract- Bayesian methods are theoretically optimal in 
many situations. Bayesian model averaging is generally con
sidered the standard model for creating ensembles of learners 
using Bayesian methods, but this technique is often out
performed by more ad hoc methods in empirical studies. The 
reason for this failure has important theoretical implications 
for our understanding of why ensembles work. It has been 
proposed that Bayesian model averaging struggles in practice 
because it accounts for uncertainty about which model is 
correct but still operates under the assumption that only one 
of them is. In order to more effectively access the benefits 
inherent in ensembles, Bayesian strategies should therefore be 
directed more towards model combination rather than the 
model selection implicit in Bayesian model averaging. This work 
provides empirical verification for this hypothesis using several 
different Bayesian model combination approaches tested on 
a wide variety of classification problems. We show that even 
the most simplistic of Bayesian model combination strategies 
outperforms the traditional ad hoc techniques of bagging and 
boosting, as well as outperforming BMA over a wide variety of 
cases. This suggests that the power of ensembles does not come 
from their ability to account for model uncertainty, but instead 
comes from the changes in representational and preferential 
bias inherent in the process of combining several different 
models. 

I. I TRODUCTION 

Learner error can often be reduced by combining infor
mation from a set of models. This poses the challenge of 
finding effective ways to create combinations of learners. A 
number of ad hoc strategies have been proposed to address 
this task. For example, bagging [1] employs one of the 
simplest methods of combining the information presented in 
an ensemble: allowing each learner to have one vote toward 
the final classification of an instance. Boosting [2], attempts 
to focus on harder instances during the course of training, 
and votes are weighted by the accuracy that a given learner 
achieves on the data set. 

One possible explanation for the success of ensemble 
learners is based on Bayesian learning theory [3]. Suppos
edly, using a single model for learning ignores the uncertainty 
about model correctness that results from a finite amount 
of data. Under this assumption, ensembles work because 
they can more effectively deal with this uncertainty about 
model correctness. Strategies such as bagging compensate 
for this uncertainty simply by incorporating a set of models 
into the learning process while Bayesian model averaging 
(BMA) should provide the "optimal" ensemble procedure. 

This work was partially supported by the Advanced Radiography Science 
Campaign at Los Alamos National Laboratory. 

Bayesian model averaging accounts for uncertainty of model 
correctness by integrating over the model space and weight
ing each model by the probability of its being the "correct" 
model. BMA is the generally accepted method for applying 
Bayesian learning theory to the task of model combination. 
Although the result of BMA is a combination of models, 
this combination is actually just integrating out the system's 
uncertainty as to which model is correct in the sense of 
being the Data Generating Model (DGM) assuming that 
one and only one of the models is indeed the DGM. Thus, 
BMA is actually a model selection procedure that deals with 
uncertainty about its selection using a combination. 

One might expect Bayesian model averaging to perform 
well since Bayesian techniques have been applied to many 
other tasks with high success. For example, even simple 
single model classifiers such as NaIve Bayes [4] and Flexible 
Bayes [5] can achieve remarkably high accuracy on certain 
problems. More complex distributions can be represented 
by Bayesian mixture models. Sampling techniques such as 
Markov Chain Monte Carlo can be used to infer parameters 
in relatively complex models [6]. Specific models are also 
commonly used for specific tasks. The latent Dirichlet allo
cation model is commonly used to identify topics present in a 
set of documents [7]. However, when it comes to the task of 
ensemble creation, the standard technique of Bayesian model 
averaging encounters some problems. 

In an empirical study, Domingos [8] showed that Bayesian 
model averaging is prone to higher error rates than more ad 
hoc methods. Specifically, Bayesian model averaging resulted 
in higher average error rates than bagging and partitioning 
in a variety of experiments. A similar result was obtained by 
Clarke [9], who compared BMA to stacking. At first, these 
results appear to be surprising given the supposed optimality 
of Bayesian techniques and their success in so many other 
areas. 

Domingos argued that the problem with BMA is that 
it places too much weight on the maximum likelihood 
classifier. Even slight di fferences in error rate between clas
sifiers result in much higher weighting of the more accurate 
classifier in the ensemble. Yet Bayesian model averaging is 
theoretically the optimal method for dealing with uncertainty 
about which hypothesis in the hypothesis space is correct. 
Given the superior performance of ad hoc methods in em
pirical studies, it would appear that ensemble performance 
is due to more than just their ability to deal with model 
uncertainty. 

While comparing BMA to stacking, Clarke empirically 



noticed that when the Data Generating Model (DGM) is not 
one of the component models in the ensemble, BMA tends to 
converge to the model closest to the DGM rather than to the 
combination closest to the DGM [9]. He also empirically 
noted that, in the cases he studied, when the DGM is not 
one of the component models of an ensemble, there usually 
existed a combination of models that could more closely 
replicate the behavior of the DMG than could any individual 
model on their own. 

Three years earlier, Minka theorized that Bayesian model 
averaging is outperformed by other strategies because it fails 
to take advantage of the enriched hypothesis space that an 
ensemble can provide [10) . If Minka is correct, an ensemble 
does more than just deal with uncertainty about which model 
is the correct model; it can augment the hypothesis space 
with hypotheses that its individual members may not be 
able to even represent on their own. Further, ensembles 
may change the preferential bias of a learning algorithm, 
predisposing the algorithm towards combinations of models 
that tend to overfit less than single learners. As Minka states 
in his paper, " .. . the only flaw with BMA is the belief that it 
is an algorithm for model combination." Yet, despite this 
fact , people continue to employ BMA in the very case 
where BMA is unlikely to perform well, namely the case 
where the DGM is not one of the component ensemble 
members [9]. In this situation, Bagging and other ad hoc 
strategies should have an advantage over Bayesian model 
averaging because they incorporate more information from 
the enriched hypothesis space provided by an ensemble. This 
suggests that if Bayesian methods are to be effectively used 
in ensemble creation strategies, efforts should be directed 
towards creation of Bayesian mixture models that directly 
infer the optimal combination of the component models. 
Such strategies would take advantage of both the optimal
ity of Bayesian learning strategies and the error reduction 
advantages that can result from combinations of models. 

There are several ways in which an ensemble combina
tion can be generated using Bayesian principles. Bayesian 
inference could be used to generate the optimal combination 
(ensemble member weights) given a set of fixed (and already 
trained) learners. Alternatively, Bayesian inference could be 
used to infer the optimal set of component model parameters 
given a fixed ensemble combination scheme. Finally, these 
two approaches could be used simultaneously. In this work 
we will provide empirical evidence for Minka's hypothesis 
by examining the first two of these three possibilities. In 
Section II we review Minka's argument that Bayesian model 
averaging assumes that a single ensemble member is the 
DGM. Section III then proposes several possibilities for 
generating ensemble weighs given a set of fixed compo
nent models using the same Bayesian principles as BMA, 
but directing them towards the task of model combination 
instead of model selection. More complicated strategies are 
clearly possible, but even the simple models presented here 
outperform bagging, boosting, and Bayesian model averaging 
in terms of error reduction on 50 data sets. As a complement 

to these techniques, we present a strategy in Section IV 
that uses Bayesian methods to learn optimal component 
model parameters given a fixed combination of weights. 
Again, while there is clear potential for more sophisticated 
strategies, even this simple one outperforms more ad hoc 
methods of model learning in terms of error reduction. 

II . BAYESIAN AVERAGING OF LINEAR COMBINATIONS 

OF MODELS 

With traditional Bayesian model averaging, the class value 
assigned to a given example by the overall model is de
termined by taking the probability of each class value as 
predicted by a single model, multiplying by the probability 
that the model is the Data Generating Model (DGM) given a 
sample of data, and summing these values for all models in 
the hypothesis space. Let n be the size of a data set D. Each 
individual example di is comprised of a vector of attribute 
values Xi and an associated class value Yi . The model space 
is approximated by a finite set of learners, H , with h being 
an individual hypothesis in that space. Equation I illustrates 
how the probability of a class value is determined for a given 
example. The class value assigned to the instance will be the 
one with the maximum probability. 

p(Yil xi , D, H ) = L p(Yilxi, h)p(hID ) (I) 
hE H 

By Bayes' Theorem, the posterior probability of h given 
D (the posterior probability that h is the DGM) can be 
calculated as shown in Equation 2. Here, p(h) represents 
the prior probability of h and the product of the p(dil h) 
determines the likelihood. 

p(h) n 
p(hID ) = p(D ) gp(di1 h) (2) 

Bayesian model averaging strategies commonly assume a 
uniform class noise model when determining likelihood [8). 
With this model , the class of each example is assumed to 
be corrupted with probability E. This means that p(dil h) 
is 1 - E if h correctly predicts class Yi for example Xi 
and E otherwise. Equation 2 can be rewritten as shown in 
Equation 3. (Since the prior probability of the data p(D ) is 
the same for each model, the equation becomes a statement 
of proportionality and p(D ) can be ignored.) 

(3) 

r is the number of examples correctly classified by h. E can 
be estimated by the average error rate of the model on the 
data. This method of calculating likelihood tends to weight 
even slightly more accurate classifiers much more heavily. 
For example, on a data set with 100 examples, a learner that 
achieved 95% accuracy would be weighted as 17 times more 
likely than a learner that achieved an accuracy of 94%. 

(1 5 )95( 5 )5 - 239 - 9 
- 100 100 - . * 10 

(1 - -2.... )94 ( -2.... )6 - 1 39 * 10- 10 
100 100 - . 



Using these posterior probabilities to weight learner clas
sifications is clearly an effective way of exploiting the model 
with the highest accuracy while still allowing influence from 
other models to account for the uncertainty about which 
model is correct. It is somewhat ineffective, however, at 
taking advantage of information provided by the entire set of 
models [9]. If the goal is to use optimal Bayesian techniques 
and still capitalize on the possible advantages inherent in 
learner combinations, these techniques could be modified 
in order to produce optimal methods of model combination 
rather than model selection. 
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Fig. I. Bayesian model averaging. Since the probability of the most likely 
hypothesis is often much higher than the probability of the other hypothesis, 
p(Yilxi , D , H ) will be predominantly determined by p(hmostL ikelyI D ). 

III. BAYESIAN MODEL COMBINATION 

Bayesian model averaging can easily be modified to pro
duce an optimal technique for model combination rather 
than model selection. This strategy is referred to here as 
Bayesian model combination (BMC). Equation I is modified 
as follows: 

p(Yiixi, D , H , E ) = 'Lp(Yi ixi , H, e)p(ei D ) (4) 
eE E 

where e is an element in the space E of possible model 
combinations. In this case, the outputs from individual hy
potheses are combined in a variety of ways to create a set of 
diverse ensembles. The output from each ensemble is then 
weighted by the probability that the ensemble is correct given 
the training data. Now, instead of integrating out uncertainty 
about which ensemble member is correct, we are instead 
integrating out uncertainty about which model combination 
is correct. 

Although the space of potential model combinations is 
very large, as we shall see, it can easily be sampled from 
in order to produce a reasonable finite set of potential model 
combinations to test. 

A. BMC with a Linear Combinations of Models 

For the first set of Bayesian model combination exper
iments, ensembles were created using linear combinations 
of outputs from the base classifiers. Ensembles consisted 
of m decision trees whose votes were combined using 
various weights. In order to systematically generate a diverse 
collection of ensembles, nested for loops were used to assign 
incrementally increasing values to the base components. 
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Fig. 2. Bayesian model combination. In this case, p(y; Ix;, D , H , E) will 
be predominantly determined by p(emostLikely ID ). The model is now 
heavily weighting the most probable combination of hypotheses instead of 
the most probable single hypothesis. 

These values were then normalized to produce a vector of 
weights. Table I illustrates how weights were assigned. For 
the reported experiments m = 10 and ensemble weightings 
were assigned using an increment value of three. This 
allowed for the creation of 59, 049 different ensembles from 
the same ten base classifiers. 

TABLE I 

W EIGHT ASSIGNMENTS FOR INDIVID UAL COMPONENTS IN A SIMPLE 

B AYESIAN MODEL COMBINATION LEARNER. EACH COMPONENT IS 

WEIGHTED WITH A UNIFORM PRIOR IN THESE EXPERIMENTS . 

Raw weights 

II I 1 1 II I I I 

I II II I I I I 2 

1 11 1111113 

I II II I 1 12 1 

3333333333 

Normalized weights 

0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.18 

0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.25 

0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.18 0.09 

0.10 0.10 0.10 0.10 0.10 0.10 0.1 0 0.10 0.10 0.10 

p t e 

!riiIi4o

is 5 4 

4 

This version of Bayesian model combination is com
pared to the strategies of bagging, boosting, and traditional 
Bayesian model averaging. Experiments were implemented 
using modified Weka code [I I]. Ten J48 decision trees 
(Weka's implementation of the C4.5 algorithm) with reduced
error pruning were used as the base classifiers in each of the 
algorithms. Bagging and boosting were implemented using 
Weka defaults. For bagging, training data for the component 
classifiers was obtained by drawing with replacement from 
the initial training set until a new training set the same size 



as the original set was created [1]. Training sets for the 
boosting algorithm were generated in a similar manner, but 
instances misclassified by initial component classifiers were 
more likely to appear in the training data for subsequent clas
sifiers [2]. Bayesian model averaging and Bayesian model 
combination were implemented using the same ten decision 
trees that were used in the bagging experiments as component 
classifiers. 

Probabilities for class predictions by individual learners 
and ensembles were estimated using Weka defaults. For 
the individual J48 decision trees, P(Yi !Xi, h) was estimated 
based on the purity of classification at the leaf node. For the 
ensemble, P(Yi!Xi, e) was calculated by averaging probability 
estimates from the individual trees. 

Posterior probabilities for ensembles in the Bayesian 
model combination approach were estimated the same way 
they were estimated for individual learners in Bayesian 
model averaging. Equation 3 can be easily applied to cal
culate p(eID) instead of p(h!D). The class of each example 
is assumed to be corrupted with probability E, so p( di ! e) is 
1 - E if e correctly predicts class Yi for example Xi and E 

otherwise. 
Empirical results, shown in Table II, demonstrate the 

efficacy of this Bayesian model combination strategy. Ex
periments were conducted on the twenty-six data sets cited 
by Domingos, but since this selection of data sets proved 
insufficient to draw conclusions about the statistical signifi
cance of mean differences in accuracy, an additional twenty
four datasets were included. All data sets were obtained from 
the UCI repository [12] . Error was calculated using ten-fold 
cross-validation. 

Just as in Domingo's experiments, these results show that 
Bayesian model averaging achieves a lower average accuracy 
on the data sets than either bagging or boosting. However, 
a strategy that iterates over combinations of models allows 
a Bayesian method to compete with the ad hoc methods. 
An application of the Friedman test reveals significant dif
ferences in average accuracy among the various strategies. 
(27.77 rv X2 ,DF = 4,p <= 0.01). The Bonferroni-Dunn 
post hoc test indicates that the improvement in accuracy of 
this Bayesian model combination strategy exceeds the critical 
difference for significance at a confidence level of 95% for 
two of the other four strategies (Critical difference = 0.87, 
Mean rank differences: 1.26,0.81,0.18, 1.25). 

B. BMC with Sampling from a Dirichlet Distribution 

Our previous implementation of BMC used a systematic 
method for sampling the space of potential model combina
tions. But as we shall see, further improvements in accuracy 
can be achieved using a slightly more sophisticated stochastic 
strategy for creating a set of potential model combinations. 
Instead of assigning weights incrementally, the weights for 
each combination of the base classifiers can be obtained by 
sampling from a Dirichlet distribution. 

In this next set of experiments, weights for the first 
q combinations were drawn from a Dirichlet distribution 
with uniform alpha values. p(eID) was then calculated for 

TABLE II 

AVERAGE ACCURACY OF VARIOUS ENSEMBLE COMBINATION 

STRATEGIES 

J48 Bagging Boosting BMA BMC 
anneal 98.44 98.22 99.55 98.22 98.89 

audiology 77.88 76.55 84.96 76.11 82.30 
autos 81.46 69.76 83.90 70.24 84.39 

balance-scale 76.64 82.88 78.88 82.88 81.44 
bupa 68.70 71.01 71.59 70.43 69.86 

cancer-wise. 93.85 95.14 95.71 95.28 95.42 
cancer-yugo .. 75.52 67.83 69.58 68.18 73.08 

car 92.36 92.19 96.12 92.01 93.87 
cmc 52.14 53.63 50.78 41.96 53.22 

credit-a 86.09 85.Q7 84.20 84.93 85.65 
credit-g 70.50 74.40 69.60 74.30 72.90 

dermatology 93.99 92.08 95.63 92.08 95.36 
diabetes 73.83 74.61 72.40 74.61 72.92 

echo 97.30 97.30 95.95 97.30 97.30 
ecoli-c 84.23 83.04 81.25 82.74 84.82 
glass 66.82 69.63 74.30 68.69 70.56 

haberman 71.90 73.20 72.55 73.20 74.51 
heart-cleveland 77.56 82.18 82.18 82.18 80.86 

heart-h 80.95 78.57 78.57 78.57 79.59 
heart-statlog 76.67 79.26 80.37 78.52 80.00 

hepatitis 83.87 84.52 85.81 83.87 84.52 
horse-colic 85.33 85.33 83.42 85.05 85.87 
hypothyroid 99.58 99.55 99.58 99.55 99.60 
ionosphere 91.45 90.88 93.16 90.60 93.16 

iris 96.00 94.00 93.33 94.00 95.33 
kr-vs-kp 99.44 99.12 99.50 99.12 99.44 

labor 73.68 85.96 89.47 87.72 84.21 
led 100.00 100.00 100.00 100.00 100.00 

lenses 83.33 66.67 70.83 58.33 79.17 
letter 100.00 100.00 100.00 100.00 100.00 

liver-disorders 68.70 71.01 71.59 70.43 69.86 
lungcancer 50.00 50.00 53.12 46.88 53.12 

lymph 77.03 78.38 81.08 79.05 79.73 
monks 96.53 99.54 100.00 96.99 100.00 

page-blocks 96.88 97.24 97.02 97.26 97.26 
postop 70.00 71.11 56.67 71.11 68.89 

primary-tumor 39.82 45.13 40.12 45.13 41.59 
promoters 81.13 83.96 85.85 85.85 81.13 
segment 96.93 96.97 98.48 96.88 97.66 

sick 98.81 98.49 99.18 98.46 98.94 
solar· flare 97.83 97.83 96.59 97.83 97.83 

sonar 71.15 77.40 77.88 77.40 75.48 
soybean 91.51 86.82 92.83 86.38 93.56 

spect 78.28 81.65 80.15 82.02 79.03 
tic-tac-toe 85.Q7 92.07 96.35 91.65 93.53 

vehicle 72.46 72.70 76.24 72.81 76.36 
vote 94.79 94.58 95.66 94.58 95.66 
wine 93.82 94.94 96.63 93.26 95.51 
yeast 56.00 60.04 56.40 31.20 60.24 
zoo 92.08 87.13 96.04 86.14 93.07 

average: 82.37 82.79 83.62 81.64 83.93 

each combination, and the weights from the most probable 
combination were used to update the alpha values for the 
distribution from which the next q weight assignments were 
drawn. Table III illustrates how weights were assigned in 
these experiments. 

The same ten base classifiers from the previous section 
were used in these experiments. Alpha values were updated 
with a q value of three, and 59,049 Dirchlet-generated weight 
assignments were considered. Results are shown in Table IV. 

An application of the Friedman test reveals significant 
differences in average accuracy among the various strategies. 



TABLE III 
SAMPL E WEIGHT ASSIGNM ENTS FOR INDIVIDUAL COMPONENTS IN A 

BAYESIA N MODEL COMBINATION LEAR NER EMPLOYING A D IRICH LET 

DISTRIB UTION. AFTER A SET OF COMBINATIONS ARE GENERATED , THE 

WEIGHTS OF THE MOST PROBABLE COMBINATION ARE USED TO UPDATE 

THE ALPHA VAL UES OF THE DIRICHLET FROM WHICH THE NEXT SET OF 

COMBINATIONS WILL BE DRAWN . As WITH THE FIRST EXPERIMENTS, 

EACH COMPONENT IS WEIGHTED WITH A U NIFORM PRIOR. 

Weights p e 

Initial alpha values: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.06 0.26 0.08 0.11 0.09 0.20 0.17 0.00 0.02 0.01 0.00 

0.100.150.140.280.04 0.00 0.17 0.03 0.07 0.02 0.03 

0.00 O. ID 0.04 0.04 0.03 0.03 0.09 0.02 0.29 0.36 0.02 

New alpha values: 1.101.15 1.141.28 1.04 1.00 1.17 L03 1.07 1.02 

0.07 0.00 0.04 0.12 0.26 0.15 0.07 OJ ] 0.01 0.13 0.03 

0.160.13 0.15 0.05 0.00 0.04 0.07 0.14 0.13 0.1 2 0.02 

om 0.05 0.070.15 0.04 0.08 0.26 0.01 0.26 0.08 0.02 

New alpha values: 1.17 1.15 1.191.40 1.3 1 1.16 1.24 1.17 1.07 1.15 

0.02 0.02 0.D3 0.28 0.20 0.04 0.04 0.00 0.18 0. 19 0.02 

0.35 0.1 2 0.130.06 0.08 0.07 0.09 0.02 0.06 0.01 0.00 

0.Q7 0.14 0.02 0.01 0.17 0,01 0.170.150.14 0.12 0.03 

(28.76 ~ X2 , DF = 4, P <= 0.01). The Bonferroni-Dunn 
post hoc test indicates that the improvement in accuracy 
of Bayesian model combination with Dirichlet sampling 
exceeds the critical difference for significance at a con
fidence level of 95% for three of the other four strate
gies (Critical difference = 0.87, Mean rank differences: 
1.33, 0.87,0.29,1.31). 

IV. BAYESIAN MODEL PARAMETER LEARNING GIVEN A 
FIXED COMBINATION OF MODELS 

The previous experiments effectively use Bayesian tech
niques to determine the optimal combination of a fixed set 
of learners. Alternately, Bayesian techniques can be used 
to update learners given a fixed combination of weights. 
There are likely many models for which this sort of strategy 
could be applied, but one simple illustrative case involves 
the CMAC neural network topology [13]. 

The CMAC is modeled on the human cerebellum. It func
tions by mapping weights w[i ] to tiles whjch are interpreted 
spatially, as illustrated in Figure 3. Inputs are mapped to 
the correct bins by means of an association function b[i ](x ), 
where b[i] (x) = 0 when x does not fall within the spacial 
region assigned to bin i and where b[i ](x ) = 1 when it does . 
The output of the system cim be computed as follows: 

f CMA c{X) = L w['i] b[i](x ) (5) 

Note that the CMAC outputs continuous values, so the 
experiments in this section will involve data sets with real 
rather than discrete target values. The error at location x is 
calculated as shown: 

e(x) = f CM Ac{X) - f observed (X) 

Traditionally, weights are updated as follows: 

. e(x ) 
~w [~] = QI:i b[i ](x) 

(6) 

(7) 

TABLE IV 
AVERAGE ACCURACY OF VARIOUS ENSEMBLE COMBINATION 

STRATEGIES 

J48 Bagging Boosting BMA BMC-D 
anneal 98.44 98.22 99.55 98.22 98.89 

audiology 77.88 76.55 84.96 76.11 82.30 
autos 81.46 69.76 83.90 70.24 84.88 

balance-scale 76.64 82.88 78.88 82.88 81.92 
bupa 68.70 71.01 71.59 70.43 71.88 

cancer-wise. 93.85 95.14 95.71 95.28 95.14 
cancer-yugo. 75.52 67.83 69.58 68.18 73.08 

car 92.36 92.19 96.12 92.01 93.75 
erne 52.14 53.63 50.78 41.96 52.95 

credit-a 86.09 85.07 84.20 84.93 85.Q7 
credit-g 70.50 74.40 69.60 74.30 73.10 

dermatology 93.99 92.08 95.63 92.08 95.36 
diabetes 73.83 74.61 72.40 74.61 74.35 

echo 97.30 97.30 95.95 97.30 97.30 
ecoli-c 84.23 83.04 81.25 82.74 84.52 
glass 66.82 69.63 74.30 68.69 70.09 

haberman 71.90 73.20 72.55 73.20 74.51 
hean-cleveland 77.56 82.18 82.18 82.18 79.87 

hean-h 80.95 78.57 78.57 78.57 79.59 
hean-statiog 76.67 79.26 80.37 78.52 80.00 

hepatitis 83.87 84.52 85.81 83.87 83.87 
horse-colic 85.33 85.33 83.42 85.05 86.14 
hypothyroid 99.58 99.55 99.58 99.55 99.60 
ionosphere 91.45 90.88 93.16 90.60 93.45 

iris 96.00 94.00 93.33 94.00 95.33 
kr-vs-kp 99.44 99.12 99.50 99.12 99.44 

labor 73.68 85.96 89.47 87.72 84.21 
led 100.00 100.00 100.00 100.00 100.00 

lenses 83.33 66.67 70.83 58.33 79.17 
letter 100.00 100.00 100.00 100.00 100.00 

liver-disorders 68.70 71.01 71.59 70.43 71.88 
lungcancer 50.00 50.00 53.12 46.88 56.25 

lymph 77.03 78.38 81.08 79.05 80.41 
monks 96.53 99.54 100.00 96.99 100.00 

page-blocks 96.88 97.24 97.02 97.26 97.24 
postop 70.00 71.11 56.67 71.11 67.78 

primary-tumor 39.82 45.13 40.12 45.13 41.30 
promoters 81.13 83.96 85.85 85.85 81.13 
segment 96.93 96.97 98.48 96.88 97.45 

sick 98.81 98.49 99.18 98.46 98.97 
solar-flare 97.83 97.83 96.59 97.83 97.83 

sonar 71.15 77.40 77.88 77.40 74.52 
soybean 91.51 86.82 92.83 86.38 93 .12 

speet 78.28 81.65 80.15 82.02 79.03 
tic-tac-toe 85.Q7 92.07 96.35 91.65 93.53 

vehicle 72.46 72.70 76.24 72.81 76.48 
vote 94.79 94.58 95.66 94.58 95.44 
wine 93.82 94.94 96.63 93.26 95.51 
yeast 56.00 60.04 56.40 31.20 60.51 
zoo 92.08 87.13 96.04 86.14 93.07 

average: 82.37 82.79 83.62 81.64 84.02 

where Q is the learning rate. The output y of the network 
at any position x is the sum of the weights for the tiles that 
overlap that position. 

Though not a tradjtional view, the CMAC can be thought 
of as an ensemble where each layer learns information about 
a given function and outputs are calculated by co~binjng 
information from each layer using a fixed weighting scheme 
(each layer is equally weighted with all the others). The 
ensemble-Ijke structure suggests that the CMAC could also 
be reasonably trained using ensemble techniq~es such as 
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Fig. 3. Tile structure for a CMAC with three layers and four tiles per layer 

bagging or Bayesian model averaging, treating the layers 
as individual learners and altering the weightings of layer 
outputs according to the given technique. With one task 
specifically designed to match the assumptions made by 
BMA, that ensemble creation technique is effective in re
ducing error. However, once again, a Bayesian strategy that 
allows for a model combination approach does better on a 
wider variety of tasks. 

Carroll, Monson, and Seppi [14] showed how Bayesian 
techniques can be applied to CMAC learning. Further details 
on BCMAC training can be found elsewhere in the literature 
[15], but a brief overview is provided here. A function, 
f, is assumed to be stationary, and all observations y are 
assumed to have linear Gaussian noise with covariance ~Y' 
The relationship between the data D and the CMAC's 
representation for f can be modeled as follows: 

p(ylx, f) = N(y; f(x), ~y) . (8) 

This can be rewritten as: 

p(ylx, f) = N(yIHw, ~y), (9) 

where H can be thought of as an association matrix. Hi,j = 1 
if tile j influences the training example i . Weight values 
are represented by the vector w. Weights of the model are 
related to observations according to a multivariate normal 
model [16] with prior parameters J1.o and ~o. The parameters 
of the posterior distributions for the mean and covariance can 
then be found by: 

(10) 

and 
(11 ) 

where 

These equations are identical to the Kalman filter for a 
single time step. This observation means that, given a prior 
over CMAC weights and some training data, a well-known 
and widely studied filtering technique can be applied to solve 
in closed form for both the posterior distribution over the 

CMAC weights and the posterior predictive distribution over 
CMAC outputs. 

The benefits of this strategy are demonstrated in the fol
lowing experiments. The layers of the CMAC were learned 
using the traditional CMAC learning rule, bagging, Bayesian 
model averaging, and the BCMAC learning rule. All of the 
CMACs were constructed with five layers and between three 
and seven tiles tiles per dimension on each layer. With the 
bagging CMAC, layers were trained individual on size n 
subsets selected with replacement from the initial training 
set of size n. Outputs of each layer were then weighted 
equally when calculating the final output for a given example. 
The Bayesian model averaging CMAC was constructed in 
a similar manner, but layer outputs were weighted by a 
likelihood term calculated using a normal noise model. Priors 
for the BCMAC were calculated empirically based on the 
data sets. 

Experiments are conducted on three numeric data sets 
provided by Weka for machine learning tasks [11]. Because 
the CMAC was designed for continuous values, these sets 
were selected for their limited number of numerical features 
and numeric class values. Algorithm performance was also 
tested on twoDimEgg, a variant of the two-dimensional egg 
carton function y = sin(xl *2.5) + sin(x2 *2.5), and step2d, 
a stepwise function which returns 1 if xi + x~ < 10 and 
-1 otherwise. This rather simple function was specifically 
chosen to have a steep, curved boundary, a situation which 
have been shown to be difficult for CMAC based learning 
algorithms. 

In order to further test the theory that BMA performs 
poorly because it performs optimal model selection instead of 
optimal model combination, the final data set, optimalBMA, 
was constructed to provide a situation where model selection 
would perform well [9]. The function assigns -1 to all values 
left of a vertical boundary and 1 to all values to the right. 
This boundary was aligned with the edge of one of the tiles 
in the CMAC. Thus, one of the layers would exactly replicate 
the DGM in the sense of providing correct outputs for each 
example while every other layer would provide at least some 
incorrect outputs. The goal of an ensemble strategy would 
be to select this layer. 

TABLE V 

AVERAGE ERROR RATES OF FOUR LEARNING STRATEGIES 

CMAC Bagging BMA BCMAC 

elusage 0.047 0.045 0.045 0.035 
gascon 0.140 0.135 0.134 0.041 
longley 0.097 0.119 0.119 0.062 
step2d 0.019 oms 0.022 oms 
twoDirnEgg 0.025 0.109 0.270 oms 
optimalBMA 0.005 0.071 0.006 0.002 

The BCMAC achieves a substantially lower error rate 
than the Bayesian model averaging strategy on all data sets 
studied, except for the case of optimalBMA where the results 
are nearly indistinguishable. In fact, with the exception 
of one tie with bagging on the step2d function, BCMAC 



outperforms all of the other three algorithms in terms of error 
reduction over the other five data sets. As with the previous 
experiments, bagging was often able to achieve a lower 
error rate than Bayesian model averaging. However, Bayesian 
model averaging substantially outperforms bagging on the 
optimalBMA data set, where placing all of the weight on 
one component is the best strategy. BMA was outperformed 
by the ad hoc techniques, except in the one case where 
model selection was required. This again provides further 
empirical justification for Minka's proposition on the theory 
of ensemble learning. 

V. CONCLUSION 

Despite the theoretical optimality of Bayesian methods and 
their successful application to a wide variety of tasks, the 
standard technique of Bayesian model averaging struggles in 
empirical studies. Minka theorized that since the algorithm 
places so much emphasis on the most likely ensemble 
member, it fails to take advantage of the benefits inherent in 
model combinations. However, as we have shown, if BMA is 
modified to integrate over combinations of models rather than 
over individual learners, it can achieve much better results. 

Domingos described a number of situations in which 
Bayesian model averaging is outperformed by standard ad 
hoc ensemble creation methods. We have shown that even 
the most simplistic of Bayesian model combination strategies 
outperforms the traditional ad hoc techniques of bagging and 
boosting, as well as outperforming BMA in a significant 
number of cases. We have demonstrated with the BCMAC 
experiments that, in the rare instances where model selection 
is indeed the correct approach, Bayesian model averaging 
performs well. On most problems, however, a Bayesian 
technique geared toward selecting a combination of models 
results in lower error rates. 

This work has some theoretical implications for why 
ensembles work. The results suggest the effectiveness of 
ensembles is due, at least in part, to the enriched hypothesis 
space and more general bias that can be provided by a 
combination of models. We have demonstrated that there are 
a wide variety of potential methods for applying Bayesian 
techniques to model combination. We have shown that it is 
possible to fix the component learners and then learn the 
optimal model combination in a Bayesian fashion (both ver
sions of BMC). We have also shown that in some situations 
it is possible to fix the model combination strategy, and learn 
optimal models given the known combination (BCMAC). 

Future work will involve the investigation of more so
phisticated methods of Bayesian model combination. For 
example, the simple Bayesian model combination strategies 
presented in Section III could be modified to allow for 
non-linear combinations of models. Other possible strategies 
might take spatial considerations into account, developing 
learners to specialize in different areas of the feature space 
or training learners with the sampling techniques used in 
boosting. 

In this paper, we have shown how Bayesian inference 
can be used to generate the optimal combination (ensemble 

member weights) given a set of fixed (and already trained) 
learners. We have also shown how Bayesian inference can be 
used to infer the optimal set of component model parameters 
given a fixed ensemble combination scheme. Future work 
will involve using these two approaches could be used 
simultaneously. One way to accomplish this could involve an 
expectation maximization strategy. An optimal combination 
could be determined given a set of learners, and then the 
learners could be updated given the new combination strat
egy. Alternatively, strategies could be developed that would 
allow learners and combinations to be inferred simultane
ously. The BCMAC can be solved in closed form because 
both weights and outputs are distributed normally. Other 
learners with similar Normal distribution properties might 
also be solved in a similar fashion. Gaussian processes should 
be explored as a potential rich framework for building such 
learners. 

REFERENCES 

[I] L. Breiman, "Bagging predictors," Machine Learning, vol. 24, no. 2, 
pp. 123-140, 1996. 

[2] Y. Freund and R. E. Schapire, "Experiments with a new boosting 
algorithm," Proceedings of the Thirteenth International Conference on 
Machine Learning, 1996. 

[3] J. M. Bernardo and A. F. M. Smith, Bayesian theory. New York, 
NY: Wiley, 1994. 

[4] K. Lang, "Newsweeder: Learning to filter netnews," Proceedings of the 
Twelfth International Conference on Machine Learning, pp. 331-339, 
19~. . 

[5] G. H. John and P. Langley, "Estimating continuous distributions 
in bayesian classifiers," Proceedings of the Eleventh Conference on 
Uncertainty in Artificial Intelligence, p. 338345, 1995. 

[6] W. R. Gilks, "Markov chain monte carlo," Encyclopedia of Biostatis
tics, 2005. 

[7] D. Blei , A. Ng, and M. Jordan, "Latent dirichlet allocation," Advances 
in Neural Information Processing Systems, vol. 14, 2002. 

[8] P. Domingos, "Bayesian averaging of classifiers and the overfilling 
problem," Proceedings of the Seventeenth International Conference 
on Machine Learning, 2000. 

[9] B. Clarke, "Comparing bayesian model averaging and stacking when 

[10] 

[II] 

[12] 

[13] 

[14] 

[15] 

[16] 

model approximation error cannot be ignored," Journal of Machine 
Learning Research, vol. 4, 2003. 
T. Minka, "Bayesian model averaging is not model combination," MIT 
Media Lab Note December 2000, 2000. 
I. H. Witten and E. Frank, Data Mining: 
Machine Learning Tools and Techniques, 2nd 
Francisco: Morgan Kaufmann, 2005. [Online]. 
http://sourceforge.netlprojectslwekalfiles/datasetsl 

Practical 
ed. San 
Available: 

S. Hettich, C. L. Blake, and C. J. Merz, "Uci repository 
of machine learning databases," 1998. [Online]. Available: 
http://www.ics.uci.edul mlearnlMLRepository.html 
J. S. Albus, "A new approach to manipulator control: The cerebellar 
model articulation controller (CMAC)," Journal of Dynamic Systems. 
Measurement, and Control, vol. 97, no. 3, pp. 22~227, 1975. 
J. L. Carroll, C. K. Monson, and K. D. Seppi, "A bayesian CMAC for 
high assurance supervised learning," Applications of Neural Networks 
in High-Assurance Systems. lJCNN Workshop , 2007. 
J. L. Carroll, "A bayesian decision theoretical approach to supervised 
learning, selective sampling, and empirical function ' optimization," 
Ph.D. dissertation, Brigham Young University, March 2010. [Online]. 
Available: http://james.jlcarroll.netlpublications/ 
M. H. DeGroot, Optimal Statistical Decisions. New York, NY: 
McGraw-Hill Book Company, 1970. 


